

Kinetic Equations

Text of the Exercises

– 03.03.2021 –

Teachers: Prof. Chiara Saffirio, Dr. Théophile Dolmaire

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let $T \geq 0$ be a positive real number and $b \in C^1([0, T] \times \mathbb{R}^d; \mathbb{R}^d)$ be a bounded vector field. Let $X \in C^1([0, T] \times [0, T] \times \mathbb{R}^d; \mathbb{R}^d)$ be the flow associated to b , i.e., the unique differentiable solution to

$$\begin{cases} \partial_s X(s, t, x) = b(s, X(s, t, x)), & \forall (s, t, x) \in [0, T] \times [0, T] \times \mathbb{R}^d, \\ X(t, t, x) = x, & \forall (t, x) \in [0, T] \times \mathbb{R}^d \end{cases} \quad (1)$$

a Prove that X satisfies the semigroup property, i.e.,

$$X(r, s, X(s, t, x)) = X(r, t, x), \quad \forall r, s, t \in [0, T], \forall x \in \mathbb{R}^d. \quad (2)$$

b Use point **a** to prove that for any $s, t \in [0, T]$ the map $X(s, t, \cdot) \in C^1(\mathbb{R}^d; \mathbb{R}^d)$ is a C^1 diffeomorphism, i.e. it is invertible with its inverse in $C^1(\mathbb{R}^d; \mathbb{R}^d)$.

Exercise 2

Let $T \geq 0$ be a positive real number, $b \in C^1([0, T] \times \mathbb{R}^d; \mathbb{R}^d)$ be a bounded vector field and $X \in C^1([0, T] \times [0, T] \times \mathbb{R}^d; \mathbb{R}^d)$ be again the flow associated to b . Define the *Jacobian* $J \in C([0, T] \times [0, T] \times \mathbb{R}^d; \mathbb{R})$ as we did in class as

$$J(s, t, x) := \det(\nabla_x X)(s, t, x). \quad (3)$$

From classical results in the theory of ordinary differential equations, $\partial_s J$ exists and is in $C([0, T] \times [0, T] \times \mathbb{R}^d; \mathbb{R})$.

Show that $J(s, t, x) > 0$ for all $(s, t, x) \in [0, T] \times [0, T] \times \mathbb{R}^d$ and that J solves

$$\begin{cases} (\partial_s J)(s, t, x) = (\operatorname{div}_x b)(s, X(s, t, x)) J(s, t, x), & \forall (s, t, x) \in [0, T] \times [0, T] \times \mathbb{R}^d, \\ J(t, t, x) = 1, & \forall (t, x) \in [0, T] \times \mathbb{R}^d. \end{cases} \quad (4)$$

Prove moreover that J satisfies

$$\partial_t J(s, t, x) + \operatorname{div}_x(b(t, x) J(s, t, x)) = 0. \quad (5)$$

*Hint: You can assume without proof that $\partial_s \nabla_x X$ exists and it is in $C([0, T] \times [0, T] \times \mathbb{R}^d; \mathbb{R})$, and is equal to $\nabla_x \partial_s X$. For a proof of this result, one can look at Theorem 2.10 in the book **Ordinary Differential Equations and Dynamical Systems** from Gerald Teschl, available online for free.*

Exercise 3

Let $T \geq 0$ be a positive real number, $b \in C^2([0, T] \times \mathbb{R}^d; \mathbb{R}^d)$ be a bounded vector-field. Assume that $u_0 \in C^1(\mathbb{R}^d)$ and that $f \in C^1([0, T] \times \mathbb{R}^d)$.

Prove that there exists a unique solution $u \in C^1([0, T] \times \mathbb{R}^d)$ for the inhomogeneous transport equation

$$\begin{cases} \partial_t u(t, x) + \operatorname{div}_x(b(t, x)u(t, x)) = f(t, x), & \forall (t, x) \in [0, T] \times \mathbb{R}^d, \\ u(0, x) = u_0(x), & \forall x \in \mathbb{R}^d. \end{cases} \quad (6)$$